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The linear stability of the impulsively started flow through a pipe of circular cross-
section is studied at high Reynolds number R. A crucial non-dimensional time of
O(R7/9) is identified at which the disturbance acquires internal flow characteristics. It is
shown that even if the disturbance amplitude at this time is as small as O(R−22/27) the
subsequent evolution of the perturbation is nonlinear, although it can still be followed
analytically using a multiple-scales approach. The amplitude and wave speed of the
nonlinear disturbance are calculated as functions of time and we show that as t→∞,
the disturbance evolves into the long-wave limit of the neutral mode structure found
by Smith & Bodonyi in the fully developed Hagen–Poiseuille flow, into which our
basic flow ultimately evolves. It is proposed that the critical amplitude found here
forms a stability boundary between the decay of linear disturbances and ‘bypass’
transition, in which the fully developed state is never attained.

1. Introduction
In the middle of the nineteenth century an exact solution to the Navier–Stokes

equations was found for the steady flow of a fluid through a straight pipe of circular
cross-section. The solution has become known as Hagen–Poiseuille flow (HPF) in
honour of the two researchers who independently discovered the experimental law
relating the axial pressure gradient along the pipe to the mean velocity of the flow. If
a carefully controlled experiment is performed it is indeed possible to realize HPF:
however in many practical situations the disturbance environment is such that this
solution only exists over a finite range of Reynolds number or in some situations not
at all. Attention therefore focused on the study of the stability of this flow, with the
first approach incorporating the effects of viscosity due to Sexl (1927), who found
the flow to be linearly stable to axisymmetric disturbances at high Reynolds number.
Since this early work there have been many theoretical investigations (e.g. Gill 1965,
1973; Davey & Drazin 1969), and numerical studies (Salwen & Grosch 1972; Garg &
Rouleau 1972). For a more complete list the reader is referred to the paper by Draad,
Kuiken & Nieuwstadt (1998). The general conclusion of these studies is that HPF is
stable to all linear disturbances and that the least-damped modes at high Reynolds
number have azimuthal wavenumbers N = 0 (axisymmetric) and N = 1. This latter
mode is also found to give the largest amplification through transient growth (Schmid
& Henningson 1994).
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Ever since the fundamental experiments of Reynolds (1883) it has been thought
that nonlinearity must play a particularly important role in the transition process
for this flow, and full numerical simulations (e.g. O’Sullivan & Breuer 1994) have
reproduced qualitatively some of the key phenomena observed in experiments, such
as the generation of puffs and slugs of vorticity (Wygnanski & Champagne 1973). A
review of the many experimental studies that have been performed can be found in
a recent paper by Han, Tumin & Wygnanski (2000).

As far as theoretical approaches are concerned the key nonlinear study has been
that of Smith & Bodonyi (1982a) (hereinafter referred to as SB). They found the
existence of a nonlinear neutral wave structure at asymptotically large Reynolds
number with a disturbance amplitude of O(R−1/3) and wavenumber and frequency of
O(1), and showed that in the limit of small wavenumber α, the disturbance amplitude
is reduced to O(R−1/3α5/3). SB studied the nonlinear equilibrium critical layer that
arises in the flow field and as a result of a numerical investigation proposed that
this structure only admits the N = 1 neutral mode. This has recently been proved
rigorously by Walton (2001). The significance of the N = 1 mode in a number of
independent studies suggests that it is of particular significance for the pipe flow
transition problem. We will see this again in the work we present later in this paper.

There have been a number of attempts to find the SB neutral modes numerically at
finite values of the Reynolds number by a continuation process involving for example,
the slow rotation of the pipe (Toplosky & Akylas 1998; Barnes & Kerswell 2000)
but so far this approach has been unsuccessful. At present it is not known with any
certainty whether the SB modes are isolated or whether they are connected in some
way to the linear stability of the developing flow in the pipe. It is this final issue that
provides the motivation for the work presented in this paper. We consider the basic
flow to be the impulsively started unsteady motion in the pipe (which is an exact
solution of the Navier–Stokes equations and possesses HPF as its large-time limit)
and begin by determining its linear stability structure at high Reynolds number. We
then show that the upper branch modes can be rendered nonlinear by increasing their
amplitude to a threshold value. It is then possible for a fixed wavelength disturbance
to remain neutral beyond the upper branch time provided it adjusts its amplitude and
frequency in a specific way over the time scale associated with the mean flow. This
idea has formed the basis of a number of recent nonlinear stability theories including
vortex–wave interaction (Hall & Smith 1991) and the PSE approach (Herbert 1997).
In the present context the nonlinear temporal evolution of the neutral modes can be
determined analytically and we find that the N = 1 mode matches exactly to the SB
structure mentioned earlier as t→∞.

The structure of the paper is as follows. In the remainder of this section we
introduce the governing equations and the basic flow under study. In § 2 we derive
the upper branch linear stability properties of this flow at high Reynolds number.
Section 3 concerns the details of the linear critical layer and how the phase shift
induced across it is affected by increasing the disturbance size slightly. The effects
of nonlinearity and its implications for the various scalings are discussed and set
the scene for the investigation of § 4 where the temporal evolution of the neutral
state is considered in the nonlinear regime. Although most of the analysis can be
tackled analytically, the temporal evolution of the nonlinear disturbance amplitude
and wave speed need to be determined numerically and this is performed in § 5. In
§ 6 we demonstrate how our nonlinear structure matches back exactly to the linear
upper branch structure as t → 0 and, more significantly perhaps, how it matches to
the SB modes in HPF as t→∞. Finally, in § 7 we draw some conclusions and suggest
avenues for further study.
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1.1. The governing equations and basic flow

The cylindrical polar coordinate system (ax, ar, θ) with origin at the pipe entrance
is used throughout this paper, where ax, ar and θ represent the axial, radial and
azimuthal coordinates respectively. The (x, r, θ) velocity components are written as
(ga2/ρν)(u, v, w), where 4g is the constant axial pressure gradient to be applied to
the pipe. Here, a is the radius of the pipe and the constants ρ and ν are the
density and kinematic viscosity of the incompressible fluid. We express the pressure
as (g2a4/ρν2)p, and the time is written in the form (ρν/ga)t. These scalings enable us
to write the governing three-dimensional, unsteady Navier–Stokes equations in the
non-dimensional form:
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where the Reynolds number R is defined by

R =
ga3

ρν2
. (2)

We consider the basic flow to be parallel and unsteady, with

u = u0(r, t), v = w = 0,

and in terms of the non-dimensional variables, the pressure gradient

∂p

∂x
= − 4

R

is suddenly applied to the pipe at time t = 0 say, thus setting the fluid into motion.
From substitution into (1), the governing equation for u0 is
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and the initial and boundary conditions are

u0 = 0 at t = 0 for 0 6 r 6 1, u0 = 0 at r = 1 for t > 0,

u0 finite at r = 0.
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The exact solution has the well-known form (e.g. Szymanski 1932; Batchelor 1967):

u0(r, t) = 1− r2 − 8

∞∑
n=1

J0(jonr)

j3
onJ1(jon)

exp(−j2
ont/R), (3)

where jon is the nth zero of the Bessel function J0. This solution will be valid for all
t 6 O(R), provided we are considering the flow at a distance of O(R) downstream of
the pipe entrance. For values of time such that t� O(R), it can easily be shown that
to leading order the solution acquires the two-tiered form

u0(r, t) =

{
4t/R, r ∼ O(1)
(4t/R)uB(η), r = 1− (t/R)1/2η,

(4)

where
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2
η2) erf( 1

2
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2
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η√
π

exp(−η2/4). (5)

The analytic form (3) of the basic flow is an attractive one to study because as
t → 0 it displays external flow characteristics and is similar to a Blasius boundary-
layer flow (as can be seen from the two-tiered form (4)), while as t→∞, u0 → 1− r2,
i.e. HPF, whose stability characteristics, as discussed earlier, still remain something of
a mystery. Our aim is to shed light on the nonlinear stability of HPF by considering
it as the long-time limit of the impulsively started problem described above.

2. The linear stability of the impulsively started flow
For the purposes of the linear stability analysis of this section we will consider the

basic flow in its two-tiered form (4). Later, when we consider the nonlinear regime in
§ 4, it will be necessary to use expression (3) for u0.

We begin by imposing a small three-dimensional disturbance upon the basic flow.
We write

(u, v, w, p) = (u0, 0, 0, p0 − 4R−1x) + δ(û, v̂, ŵ, p̂), (6)

where p0 is a constant and δ is a small quantity representing the amplitude of the
disturbance. For the present, δ can be regarded as arbitrary but later in § 3 we will
suggest a critical value for it which then allows the disturbance to subsequently evolve
in a nonlinear fashion as the basic flow becomes more developed. In this section we
wish to study how the linear neutral stability criteria alter as the base flow evolves in
time. Substitution into the Navier–Stokes equations (1) leads to the following set of
linear equations:
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∂ŵ

∂θ

)
, (7c)

∂ŵ
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which we will refer to as the linearized Navier–Stokes (LNS) equations. These will
serve as our governing equations for the remainder of this section.
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In the usual way we now express the disturbance in the wave-like form

(û, v̂, ŵ, p̂) = Re((F(r, t), iG(r, t), H(r, t), P (r, t)) exp(iξ)), (8)

where Re denotes ‘the real part’ and ξ = α(x − ct) + Nθ. Throughout this paper we
will be seeking neutral modes so that the streamwise wavenumber α and wave speed
c are both real with 0 < c < max(u0). The azimuthal wavenumber N must be an
integer for periodicity and we will concentrate on three-dimensional modes for which
N 6= 0.

For small values of t the instability will behave as though it is in an external
boundary layer: only at later times does the pipe curvature begin to play a significant
role. It is at such a time that we wish to determine the disturbance structure, so to
aid this we set t = t0/ε, with t0 of O(1) and ε a small parameter left undetermined for
the moment. Derivatives with respect to time can then be expressed as

∂

∂t
= −iαc+ ε

∂

∂t0
.

Thus, provided αc � O(ε/t0) � O(1/R), t0 can be regarded as a parameter and the
flow (in the two-tiered form (4)) can be considered as quasi-steady for the purposes of
deriving its linear stability structure. In view of this we will henceforth suppress the t0
dependence and use a prime to denote differentiation with respect to the radial variable
r. Note that the above inequalities require the Reynolds number to be asymptotically
large and this restriction on the Reynolds number will be in force for the remainder
of this paper. It is worth making the point that a finite Reynolds number approach,
involving solving the cylindrical Orr–Sommerfeld equations, although potentially
useful in determining a critical Reynolds number, would not be mathematically
consistent as then there would be no distinction between the time scales over which
the basic flow and wave evolve.

The solution procedure adopted in this section follows the same lines as many
previous high Reynolds number analyses of parallel or nearly parallel basic flows
with Smith & Bodonyi’s (1980) work on the linear stability of pipe entry flow being
the closest previous work. To the best of our knowledge the linear stability of this
particular basic flow has not been studied before, and we describe our analysis in
some detail to facilitate the comparison and matching we will make with the nonlinear
development to be outlined in § 4.

2.1. The inviscid region

Because of the largeness of the Reynolds number, viscous effects are confined to thin
layers and so across the majority of the pipe, i.e. for O(1) values of r, the disturbance
equations are, from substitution of (8) into (7),
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For convenience we define

u0 = (4t/R)ū0, c = (4t/R)c̄ with t = t0/ε, (11)

so that (10) remains unchanged except that u0, c are replaced by ū0, c̄. Viscous effects
are only important at leading order in a thin critical layer near the location where
u0 = c, and near the wall where r = 1. There are two distinguished scalings for the
wave speed c in terms of the Reynolds number: one has the critical layer sited within
the wall layer and gives rise to the scaling on the lower branch of the linear neutral
curve at high Reynolds number, while the other scaling preserves the distinction
between the two layers (although c is still small) and provides the upper branch
behaviour. It is this latter situation which we will concentrate on here as it is found
that this structure is the more relevant of the two when we move into the nonlinear
regime in § 4. We will return to discuss the detailed structure of the wall and critical
layers later: for the moment we concentrate on the solution of the Rayleigh equation
when u0 has the two-tiered form given earlier.

In this situation the solution acquires a three-zone structure. The differences in the
solution in the three regions arise essentially from the differing forms for the basic
flow: in the outer zone (region I) ū0 − c̄ ≈ 1; in region II ū0 − c̄ ≈ uB(η); and in
region III ū0 − c̄ ≈ λ0η − c̄ (where ū0 ∼ λ0η as η → 0). We now discuss each zone in
sufficient detail to derive the behaviour along the upper branch with the main aim of
determining the Reynolds number dependence of α, c and ε.

2.1.1. The subregions

Region I occupies the majority of the pipe. We have r ∼ O(1) and ū0 = 1 to leading
order. The Rayleigh equation reduces to a form of Laplace’s equation:

P ′′ +
1

r
P ′ −

(
N2

r2
+ α2

0

)
P = 0, (12)

where α0 is the leading-order part of the wavenumber and is assumed to be O(1). The
solution to this equation which remains finite as r → 0 is

P =
IN(α0r)

IN(α0)
, (13)

where we have performed a normalization such that P = 1 at r = 1. Here, IN is a
modified Bessel function of order N: the occurrence of a term of this form provides
the curvature effects referred to earlier.

In view of the form of the inner solution for u0, region II has the radial scaling

r = 1− (εR)−1/2t
1/2
0 η. (14)

The basic flow and pressure expand as

ū0 = uB(η) + O(εR)−1, P = 1 + (εR)−1/2t
1/2
0 p1(η) + · · · , (15)

with p1 subject to the matching condition

p1 ∼ −α0

I ′N(α0)

IN(α0)
η as η →∞,

in view of the solution for P in region I. Substitution of expansions (14), (15) into
the Rayleigh equation (10) leads to the result

p′1 = −α0

I ′N(α0)

IN(α0)
(uB(η))2, (16)

which matches appropriately, since uB(∞) = 1, from consideration of (5).
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In region III the wave speed c makes an appearance at leading order. First, suppose

the radial scaling here is r = 1 − (εR)−1/2t
1/2
0 qY , where q is a small parameter to be

determined in terms of R and ε. The small-η behaviour of uB can be deduced from
(4), (5) and is of the form

uB(η) ∼ λ0η + λ1η
2 as η → 0 with λ0 =

2√
π
, λ1 = − 1

2
. (17)

Thus in region III , the basic flow and the wave speed expand as

ū0 = λ0qY + λ1q
2Y 2 + · · · , c̄ = qc̄0 + q2c̄1 + · · · , (18)

and the appropriate expansion for P is

P = 1 + (εR)−1/2t
1/2
0 q3p̂1 + · · · , (19)

implied by the behaviour of (16) as η → 0. To bring the effects of the wavenumber
into the solution for p̂1, we require ∂2P/∂r2 ∼ α2

0 ∼ O(1) and so we must have the
balance (εR)1/2q/t

1/2
0 ∼ O(1), which implies that q ∼ (εR/t0)

−1/2, and determines the
radial scaling of region III as

r = 1− (εR)−1t0Y .

In terms of ε and R, the pressure, basic flow and wave speed therefore expand as

P = 1 + (εR/t0)
−2p̂1(Y ) + (εR/t0)

−5/2p̂2(Y ) + · · · , (20a)

ū0 = (εR/t0)
−1/2λ0Y + (εR/t0)

−1λ1Y
2 + · · · , (20b)

c̄ = (εR/t0)
−1/2c̄0 + (εR/t0)

−1c̄1 + · · · , (20c)

with a wavenumber expansion of the form

α = α0 + (εR/t0)
−1/2α1 + · · · .

Then, from substitution into the Rayleigh equation, p̂1 is controlled by

(λ0Y − c̄0)(p̂
′′
1 − (N2 + α2

0)) = 2λ0p̂
′
1,

with solution

p̂′1 = D0(λ0Y − c̄0)
2 − (N2 + α2

0)(Y − c̄0/λ0). (21)

To match to region II we require

p̂′1 ∼ −α0

I ′N(α0)

IN(α0)
λ2

0Y
2 as Y →∞,

from (16), (17), thus determining the constant D0 as

D0 = −α0

I ′N(α0)

IN(α0)
.

Since the dynamics are inviscid to this order we also require the tangential flow
condition that p̂′1 → 0 as Y → 0. Application of this constraint to the solution (21)
leads to the eigenrelation

α0c̄0λ0I
′
N(α0) = (N2 + α2

0)IN(α0). (22)

We will return to discuss this eigenrelation in some detail later. To find a second
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relation between α0 and c̄0 we need to proceed to the next order where we find the
equation

(λ0Y − c̄0)p̂
′′
2 − 2λ0p̂

′
2

= −(λ1Y
2 − c̄1)p̂

′′
1 + 4λ1Y p̂

′
1 + (λ1Y

2 − c̄1)(N
2 + α2

0) + 2(λ0Y − c̄0)α0α1.

At this stage it is convenient to introduce the new radial variable

ζ = λ0Y − c̄0, (23)

and after substituting for p̂1, integrating, and using (22) we find that for ζ > 0

p̂′2(ζ) = Q3(ζ)− 2λ1(N
2 + α2

0)

λ4
0

ζ2 ln ζ, (24)

where Q3(ζ) is a regular function of ζ (with Q3 ∝ ζ as ζ → 0) that can be determined
(and depends on the wavenumber correction α1) but is not required for our purposes.
The irregular behaviour of the second term in (24) implies the existence of a viscous
critical layer (which we will denote by region IV) centred around ζ = 0. We will
leave the discussion of the dynamics of this layer until § 3; at this stage we merely
note the phase shift of −π that arises there (Lin 1955; Stuart 1963; Reid 1965). The
implication of this property is that the term

ln ζ for ζ > 0 is replaced by ln |ζ| − iπ for ζ < 0. (25)

In order to understand the role that the phase shift plays in the stability structure
it is more convenient to work in terms of the perturbation to the normal velocity
rather than the pressure. In region III, the normal velocity expands as

G =

(
εR

t0

)1/2

Ĝ0(ζ) + Ĝ1(ζ) + · · · ,

where 4α0ζĜ0 = −p̂′1(Y ) from (9c), and therefore Ĝ0(0) = (N2 + α2
0)/(4α0λ0). The

irregular behaviour seen above in (24) arises in the normal velocity through the term
Ĝ1, where we find

Ĝ1 = − λ0

4α0

Q3(ζ)

ζ
+
λ1(N

2 + α2
0)

2λ3
0α0

ζ ln ζ for ζ > 0,

and using the phase shift property (25) of the critical layer referred to above we
deduce that

Ĝ1 = − λ0

4α0

Q3(ζ)

ζ
+
λ1(N

2 + α2
0)

2λ3
0α0

ζ ln(−ζ)− iπλ1(N
2 + α2

0)

2λ3
0α0

ζ for ζ < 0.

Thus upon approaching the pipe wall where ζ = −c̄0 we find that, since v̂ is the real
part of iG exp(iξ), and the function Q3 is real,

v̂ →
(
−
(
εR

t0

)3/2

λ0Ĝ
′
0(−c̄0)(1− r)− λ0

4α0

Q3(−c̄0)

c̄0

+
λ1c̄0(N

2 + α2
0)

2λ3
0α0

ln(c̄0)

)
sin ξ

−πλ1c̄0(N
2 + α2

0)

2λ3
0α0

cos ξ as r → 1, (26)

where Ĝ′0(−c̄0) = (N2 + α2
0)/(4α0c̄0λ0), from (9c) and (21). We see that the phase shift

across the critical layer gives rise to a term proportional to cos ξ which must be
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matched to the behaviour in the viscous wall layer to be discussed next. The required
balance of phase shifts will determine a unique scaling for ε in terms of R. This
effectively tells us how much time has elapsed from the start of the impulsive motion
before the disturbances begin to acquire internal characteristics. Knowledge of ε will
then allow us to determine the Reynolds number dependence of the linear neutral
modes.

2.2. The wall layer

In the wall layer (region V) we have u0 − c ' −c ∼ O(εR/t0)
−3/2 from (11) and

(20c). The balance in this layer is therefore between the disturbance frequency αc and
the viscous operator (1/R)∂2/∂r2. If we suppose that the thickness of this layer is s,
then the aforementioned balance implies s ∼ (α0Rc)

−1/2 ∼ α−1/2
0 R1/4(ε/t0)

3/4. Thus we
introduce the wall variable Ȳ via the scaling

r = 1− α−1/2
0 R1/4(ε/t0)

3/4Ȳ , (27)

where the order-one quantity α0 is inserted for comparison with the nonlinear structure
to be outlined in § 4. The basic flow here has the near-wall form

u0 = (Rt0/ε)
−1/44λ0α

−1/2
0 Ȳ + · · · ,

from (11), (17) and (27). The inviscid Rayleigh balances (9) imply that F and H are
both O(c−1) in the wall layer, and so we write the perturbations to u and w as

û = (εR/t0)
3/2α−1

0 Re(ū(Ȳ ) exp(iξ)) + · · · ,
ŵ = (εR/t0)

3/2α−1
0 Re(w̄(Ȳ ) exp(iξ)) + · · · .

In order that the continuity equation is satisfied, the expansion for v̂ must be

v̂ = −(ε/t0)
9/4R7/4α

−3/2
0 Re(iv̄(Ȳ ) exp(iξ)) + · · · ,

and we know that the wave speed has the form

c = 4(εR/t0)
−3/2c̄0 + · · · ,

while

p̂ = Re(exp(iξ)) + · · · ,
in view of the normalization applied earlier. Substitution into the LNS equations (7)
then yields the leading-order balances

α0ū+ v̄′ +Nw̄ = 0, −4ic̄0ū = −iα0 + ū′′, −4ic̄0w̄ = −iN + w̄′′,

with these equations being subject to the matching conditions

ū→ α0

4c̄0

, w̄ → N

4c̄0

as Ȳ →∞,
implied by (9) and (11), and the no-slip wall conditions

ū = v̄ = w̄ = 0 on Ȳ = 0.

The solution is easily found to be

ū =
α0

4c̄0

(1− exp(−mȲ )), w̄ = (N/α0)ū, (28a)

v̄ = − (N2 + α2
0)

4c̄0

(
Ȳ − 1

m
(1− exp(−mȲ ))

)
, (28b)
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with m = (2c̄0)
1/2(1 − i). The behaviour of this solution as we move out of the wall

layer is crucial for the purposes of balancing the phase shifts across the critical and
wall layers as we shall see in the next section.

2.3. The balancing of phase shifts and the large time behaviour of the
linear neutral modes

If we examine the wall layer solution (28) we find that as Ȳ →∞

v̂ ∼ −(ε/t0)
9/4R7/4α

−3/2
0 (N2 + α2

0)

(
Ȳ

4c̄0

sin ξ − sin ξ + cos ξ

27/2c̄
3/2
0

)
. (29)

The first term in (29) matches automatically to the first term in (26), while the second
term must be of the same order of magnitude as that arising from the phase shift
across the critical layer (i.e. the second term in (26)). Thus we require the order-of-
magnitude balance ε9/4R7/4 ∼ O(1), giving the Reynolds number scaling for ε as

ε = R−7/9.

As remarked earlier this tells us that the earliest time at which internal flow charac-
teristics are important is when t ∼ O(R7/9). The terms in v̂ proportional to cos ξ in
regions III and V must match exactly, not just in magnitude, and this leads to the
second eigenrelation:

1

27/2t
9/4
0 α

3/2
0 c̄

3/2
0

= −πλ1c̄0

2λ3
0α0

, (30)

obtained by equating terms in (26) and (29). Eliminating c̄0 between the eigenrelations
(22) and (30) we find

(N2 + α2
0)
IN(α0)

I ′N(α0)
=

λ
11/5
0 α

4/5
0

2π2/5(−λ1)2/5t
9/10
0

. (31)

For given azimuthal wavenumber N, this equation gives the variation of the leading-
order streamwise wavenumber α0 as a function of scaled time t0. This result, together
with the corresponding lower branch eigenrelation, can be interpreted as defining a
time interval over which a linear disturbance of fixed wavelength experiences growth.
Relation (31) is the temporal equivalent of that obtained by Smith & Bodonyi (1980) in
their investigation of the spatial development of the linear instability in the entrance re-
gion of a circular pipe. As alluded to earlier and to be seen in more detail later, the ad-
vantage of the temporal approach adopted here is that the analytic form for our basic
flow is valid for all time and allows us to connect the Blasius-like solution for small
t to the Hagen–Poiseuille profile obtained as t→ ∞. There is no direct spatial equiv-
alent of this analytic solution because of the complications arising from non-parallel
effects. The asymptotic structure of the linear neutral modes is shown schematically
in figure 1 for t0 ∼ O(1), where we have used the scaling ε = R−7/9 deduced above.

We can infer the scaling of the neutral modes for O(1) times by letting t0 → R−7/9t
in (31), and we find

α0 ∼ R7/12 λ
11/6
0

25/6(−πλ1)1/3
t−3/4,

where we have used the fact that IN(α0)/I
′
N(α0)→ 1 as α0 →∞. This result is consistent

with that obtained from a full linear analysis of the stability problem at O(1) times,
along the lines of the work of Smith & Bodonyi (1982b) for an accelerating boundary
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r = 0

O(1)

O (R–8/27)

Figure 1. The structure of the linear neutral modes of § 2 when t ∼ O(R7/9).

layer. The result we obtain, namely that α0 ∼ O(R7/12), differs from theirs because of
the relative smallness of our basic flow which is O(R−1) at O(1) times.

Of greater interest to us here is how the neutral criterion alters as the basic flow
becomes more developed. Letting t0 →∞ in (31) we obtain

α0 ∼ λ11
0

32π2N5λ2
1

t
−9/2
0 , (32)

which can be re-written as α0 ∼ 28t
−9/2
0 /(π15/2N5), after substitution for λ0 and λ1

from (17). From the first eigenrelation (22) we find c̄0 → N/λ0 as t0 →∞, and so

c ∼ (4N/λ0)R
−1/3t

3/2
0 ∼ 2N

√
πR−1/3t

3/2
0 , (33)

as t0 → ∞. This linear stability structure remains valid provided α0c � ε/t0 � 1/R.
Substituting in for ε, α0 and c from above we see that our solution therefore remains
intact until

t0 ∼ O(R2/9),

i.e. until t ∼ O(R). At this critical time the locally neutral wave speed becomes O(1),
the wavenumber O(R−1), the two-tier structure for the basic flow merges into one and
all the asymptotic regions analysed above become comparable with the pipe diameter.
The thickness of the various regions is shown in figure 2 for t = Rt̃ with t̃� 1.

Thus we obtain the result that as t → O(R), the characteristic wavelength of an
upper branch neutral disturbance increases to the same length scale as the basic
flow. The subsequent behaviour of the neutral modes is therefore non-parallel and
it would seem that it can only be found by solving the Navier–Stokes equations
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O(t̃1/2)

O(t̃)

Figure 2. The linear neutral mode structure of § 2 for t = Rt̃ with t̃� 1.

(or a reduced form of them) numerically. Nevertheless analytic progress can still be
made with this problem because as we shall see in § 3, provided the perturbation
amplitude δ is sufficiently large, the neutral wavenumber decreases more slowly than
linear theory predicts and a multiple scales approach to the subsequent nonlinear
problem is possible. In this situation it turns out that the amplitude and frequency of
a disturbance of fixed wavenumber can vary over the slow time scale of the basic flow
and keep the wave in neutral. Moreover, it is possible to determine the time-dependent
nonlinear disturbance amplitude analytically and show that the disturbance evolves
naturally into the small-wavenumber limit of the neutral mode structure found in
the fully developed HPF by SB. In order to demonstrate this we need to consider
the nonlinear SB structure on the O(R) length and time scales implied by the linear
analysis we have presented here, rather than on the O(1) scales assumed in their work.
In addition we need to consider a time-dependent basic flow of the form (3), rather
than simply the fully developed flow that arises from it as t → ∞ on the O(R) time
scale.

Before tackling the nonlinear evolution problem it is instructive to examine the
critical layer dynamics in more detail as this is where the main changes to the flow
take place as a result of the increased disturbance size.

3. The dynamics of the linear and weakly nonlinear critical layers
In § 2 we determined the form of the linear upper branch neutral modes by

balancing the phase shifts across the wall and critical layers. There we simply quoted
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the classical result that a phase shift of −π is induced upon crossing the critical layer.
In the presence of a larger disturbance the phase shift is modified (Benney & Bergeron
1969; Haberman 1972) and becomes dependent on the amplitude of the perturbation.
In this section we show specifically how this arises for our particular basic flow and
how the reduced phase shift plays a key role in the subsequent nonlinear evolution
of the flow. We begin by discussing the linear critical layer and then show how the
dynamics are modified as the magnitude of the perturbation is increased.

3.1. The linear critical layer

The balance in the linear critical layer is between viscosity and the inertial operator
u0∂/∂x. From the scalings of region III we see that this requires the relation(

εR

t0

)−3/2

α0ζ ∼ 1

R

(εR)2

t20ζ
2
.

Taking ε = R−7/9 (as determined in the previous section) and rearranging we have

ζ = R−2/27t
−7/6
0 α

−1/3
0 ζ̂,

where ζ̂ is the O(1) normal variable within the critical layer. The appropriate radial
scaling in this layer is therefore

r = 1− R−2/9t0
c̄0

λ0

− R−8/27t
−1/6
0 α

−1/3
0

ζ̂

λ0

,

or equivalently in terms of the scaling in region III:

Y =
c̄0

λ0

+ R−2/27t
−7/6
0 α

−1/3
0

ζ̂

λ0

.

The disturbance velocities and pressure in the critical layer have the form

δû = δR11/27α
−5/3
0 t

−1/3
0 û1(ζ̂) cos ξ + · · ·+ δR2/9α−2

0 t−1
0 ûL(ξ, ζ̂) + · · · , (34a)

δv̂ = −δR1/9α−1
0 t
−1/2
0

(N2 + α2
0)

4λ0

sin ξ + · · · − δR−2/27α
−4/3
0 t

−7/6
0 v̂L(ξ, ζ̂) + · · · , (34b)

δŵ = δR11/27α
−2/3
0 t

−1/3
0 ŵ1(ζ̂) cos ξ + · · ·+ δR2/9α−1

0 t−1
0 ŵL(ξ, ζ̂) + · · · , (34c)

δp̂ = δ cos ξ + · · · . (34d)

Here, the first terms in the expansions for û and ŵ serve to smooth out the algebraic
singularity that arises as a three-dimensional effect in the Rayleigh equation of
region III. This can be seen by consideration of (9), where both F and H are
proportional to (u0− c)−1 as u0 → c. The terms with subscript L (also present in two-
dimensional critical layers) form part of the continuation and regularization of the
logarithmic behaviour observed in region III and will be referred to as the logarithmic
contributions.

The basic flow within the critical layer is simply the Taylor expansion of its form
in region III about the critical location and can be written as

u0 = 4R−1/3t
3/2
0 c̄0 + 4R−11/27α

−1/3
0 t

1/3
0 ζ̂ + · · ·+ 4R−16/27 λ1

λ2
0

α
−2/3
0 t

−1/3
0 ζ̂2 + · · · . (35)

In both sets of expansions above we have omitted terms that do not play a vital
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role in determining the phase shift. The leading-order disturbances û1 and ŵ1 satisfy
forced Airy equations and from the continuity balance they are related via

û1 +Nŵ1 = 0. (36)

We now turn to the terms that smooth out the logarithmic behaviour. From substi-
tution into the LNS equations we have the governing equations

∂ûL

∂ξ
+ λ0

∂v̂L

∂ζ̂
+N

∂ŵL

∂ξ
= 0, (37a)

4ζ̂
∂ûL

∂ξ
+ 4λ0v̂L − 4

λ1

λ2
0

ζ̂2û1 sin ξ + 2
λ1

λ2
0

(N2 + α2
0)ζ̂ sin ξ = λ2

0

∂2ûL

∂ζ̂2
, (37b)

4ζ̂
∂ŵL

∂ξ
− 4

λ1

λ2
0

ζ̂2ŵ1 sin ξ = λ2
0

∂2ŵL

∂ζ̂2
. (37c)

We define a skewed velocity and a streamfunction such that

ūL = ûL +NŵL =
∂ψ

∂ζ̂
, v̂L = − 1

λ0

∂ψ

∂ξ
.

Then, by combining (37b, c), using (36) and differentiating with respect to ζ̂ we obtain
the governing critical layer equation in the linear regime:

4ζ̂
∂3ψ

∂ξ∂ζ̂2
+ 2

λ1

λ2
0

(N2 + α2
0) sin ξ = λ2

0

∂4ψ

∂ζ̂4
. (38)

By examining the behaviour of the logarithmic part of the term Ĝ1 (and the corre-
sponding form for the streamwise perturbation) in region III we obtain the matching
conditions

∂ψ

∂ζ̂
∼ λ1

2λ2
0

(N2 + α2
0)(ln ζ̂)(cos ξ) as ζ̂ → +∞, (39a)

∂ψ

∂ζ̂
∼ λ1

2λ2
0

(N2 + α2
0)(ln |ζ̂| cos ξ − φ sin ξ) as ζ̂ → −∞, (39b)

where φ is the anticipated phase shift across the critical layer. For the present linear
critical layer the variables can be separated in (38), and asymptotic analysis (see for
example Haberman 1976) shows that

φ = −π,
as assumed in § 2. This is of course consistent with earlier work on linear critical
layers (e.g. Stuart 1963; Reid 1965). We have discussed the linear critical layer in
more detail than usual because the scalings in operation here can be used to infer the
disturbance amplitude at which the critical layer first exhibits significant nonlinear
effects and the above analysis becomes invalid.

By inspection of (34a) and (35) we anticipate that the first major change to
the critical layer properties arises when the leading-order streamwise perturbation
becomes of the same order of magnitude as the shear contribution to the basic flow,
i.e. a new stage is reached when

δR11/27α
−5/3
0 t

−1/3
0 ∼ R−11/27α

−1/3
0 t

1/3
0 ,
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implying an enhanced amplitude of

δ ∼ R−22/27α
4/3
0 t

2/3
0 .

Thus it appears that a disturbance of the still tiny size O(R−22/27) is sufficient to
provoke nonlinear effects within the critical layer, although the rest of the flow is
altered only slightly. We now proceed to discuss precisely how the critical layer is
altered for this enhanced disturbance size and in particular the implications for the
amplitude dependence of the induced phase shift.

3.2. The weakly nonlinear critical layer

As far as the calculation of the phase shift is concerned the main change we encounter
as a result of the increased disturbance size is in the streamwise velocity profile which
is now a combination of the basic flow and the perturbation and has the expansion

u = u0 + δû

= 4R−1/3t
3/2
0 c̄0 + R−11/27α

−1/3
0 t

1/3
0 û1(ξ, ζ̂) + · · ·

+R−16/27α
−2/3
0 t

−1/3
0 ûL(ξ, ζ̂) + · · · , (40)

for the enhanced disturbance size

δ = R−22/27α
4/3
0 t

2/3
0 Â, (41)

with the amplitude parameter Â ∼ O(1) at present. The new critical layer balances are
then determined by substituting (40) and the corresponding expansions for the other
velocity components (which are largely unchanged) into the nonlinear Navier–Stokes
equations (1). At leading order the continuity equation yields

∂

∂ξ
(û1 +Nŵ1) = 0, (42)

and our matching conditions require

û1 ∼ 4ζ̂, ŵ1 → 0 as ζ̂ →∞. (43)

After some manipulation and use of (42), the leading-order momentum balances give

Â

4
(N2 + α2

0) sin ξ
∂

∂ζ̂
(û1 +Nŵ1) = Â(N2 + α2

0) sin ξ + λ2
0

∂2

∂ζ̂2
(û1 +Nŵ1),

which (upon use of (43)) leads to the simple result

û1 +Nŵ1 = 4ζ̂, (44)

and this can be used to eliminate some of the inertial contributions to the equations
governing the behaviour of the logarithmic terms. Using the skewed velocity and
streamfunction notation (now denoted by Ψ ) from earlier we can deduce that the
critical layer dynamics are now controlled by the equation

4ζ̂
∂3Ψ

∂ξ∂ζ̂2
+
Â(N2 + α2

0)

4
sin ξ

∂3Ψ

∂ζ̂3
= λ2

0

∂4Ψ

∂ζ̂4
. (45)

If Â� 1, the streamfunction equation can be linearized by writing Ψ = (4λ1/3λ
2
0)ζ̂

3 +

Âψ, where ψ satisfies the linear equation (38) and matching conditions (39) of the
previous subsection and therefore we conclude that the phase shift φ→ −π as Â→ 0.
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When Â ∼ O(1) however, the situation is not as straightforward and we need to draw
on some two-dimensional results. The same form of equation as (45) governs the
dynamics of weakly nonlinear two-dimensional critical layers and has been studied
in this context by Brown & Stewartson (1978) and Smith & Bodonyi (1982b) among
others. Their numerical studies suggest that the finite part of the velocity jump is not
of the monochromatic form found in the linear critical layer and in addition there
is a jump in the vorticity across the layer. These findings imply that the appropriate
matching conditions to be applied to (45) take the more complicated form

∂Ψ

∂ζ̂
∼ 4λ1

λ2
0

ζ̂2 + Â1/2λ̂+ζ̂ + Â
λ1

2λ2
0

(N2 + α2
0)(ln ζ̂) (cos ξ) as ζ̂ → +∞, (46a)

∂Ψ

∂ζ̂
∼ 4λ1

λ2
0

ζ̂2 + Â1/2λ̂−ζ̂ + Â
λ1

2λ2
0

(N2 + α2
0)(ln |ζ̂| cos ξ − J(ξ)) as ζ̂ → −∞. (46b)

Here, the velocity jump J(ξ) is determined as part of the solution, the constant

λ̂+ − λ̂− represents the jump in vorticity across the layer, while the term proportional

to ζ̂2 arises from the quadratic part of the basic flow. These new conditions can be
reconciled with the flow in region III which is slightly modified as a result. Although
the velocity jump is no longer monochromatic the concept of a phase shift is still
valid provided we define φ to be the coefficient of sin ξ in the Fourier series expansion
of J(ξ), i.e.

φ =
1

Nπ

∫ 2Nπ

0

J(ξ) sin ξ dξ.

By taking this as our definition of φ we retain the property that terms in region III
of the form

ln ζ for ζ > 0 are replaced by ln |ζ|+ iφ for ζ < 0. (47)

The vorticity and velocity jumps anticipated in the matching conditions (46) can be
seen to be related by integrating the critical layer equation (45) twice with respect to

ζ̂, once with respect to ξ from 0 to 2Nπ and then taking finite parts as ζ → ±∞ to
obtain

Â(N2 + α2
0)

4

∫ 2Nπ

0

[[∂Ψ/∂ζ̂]]+∞
−∞ sin ξ dξ = λ2

0

∫ 2Nπ

0

[[∂2Ψ/∂ζ̂2]]+∞
−∞dξ,

where [[ ]] denotes the finite part of the jump. Upon use of the matching conditions
and the definition of φ we obtain

λ1Â
2(N2 + α2

0)
2

8λ2
0

Nπφ = λ2
02NπÂ

1/2(λ̂+ − λ̂−),

and hence

φ =
16λ4

0

λ1(N2 + α2
0)

2
(λ̂+ − λ̂−)Â−3/2 (48)

determines the phase shift in terms of the disturbance amplitude and the vorticity
jump. Outside the critical layer the main change is expressed by the replacement (47).
In view of this the only alteration to the linear neutral stability results derived in
§ 2 is that the phase shift is φ rather than −π, and so, in particular, the large-time
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behaviour of the wavenumber is now given by

α0 ∼ λ11
0

32N5λ2
1

t
−9/2
0

φ2
as t0 →∞, (49)

which is to be compared with the linear result (32). One way of interpreting (49)
is that a wave of fixed wavelength may remain in neutral provided its amplitude Â
adjusts over the time scale of the developing flow so that the right-hand side of (49)
remains constant.

The numerical results of Smith & Bodonyi (1982b) indicate that −φ decreases
monotonically from its linear value of π as Â increases, with φ → 0 as Â → ∞. The
significance of this result is that if Â� 1 we have φ� 1 and so in the fully developed
regime wherein t0 ∼ O(R2/9) we have α0 ∼ O(R−1φ−2)� O(R−1). Thus the wavelength
of the instability is much less than the O(R) length scale over which the mean flow
develops, indicating that the subsequent evolution of the neutral disturbance, although
fully nonlinear, can be analysed by continuing our asymptotic approach, and that
recourse to a full numerical simulation is unnecessary. Another way of expressing
this is that since the wavelength of the wave is less than O(R), then if such a wave
is introduced into the flow at a distance of O(R) along the pipe it will not be aware
of the pipe entrance and as a consequence spatial derivatives of the underlying basic
flow can be neglected when considering the disturbance evolution.

Before we can consider the fully developed regime any further we need to analyse
the streamfunction equation (45) for Â � 1, determine the vorticity jump explicitly
and hence find the relationship between φ and Â. Fortunately this step has been
performed already for a two-dimensional flow by Smith & Bodonyi (1982b) and the
work we present here requires only a slight modification of their original analysis.

3.2.1. The solution of the critical layer problem at large disturbance amplitude

When Â is large, the inertia terms dominate the viscous effects in (45) and so it is
convenient to write the streamfunction equation in the form

ζ∗
∂3Ψ

∂ξ∂ζ∗2
+ β sin ξ

∂3Ψ

∂ζ∗3
=
λ2

0

4
Â−3/2 ∂

4Ψ

∂ζ∗4
, (50)

where

ζ̂ = Â1/2ζ∗, β =
N2 + α2

0

16
.

The solution at large Â then develops as

∂2Ψ

∂ζ∗2
= Â3/2χ0 + χ1 + · · · ,

where the leading-order contribution satisfies the homogeneous version of (50) and
has the solution

χ0 = G(η̂), η̂ = 1
2
ζ∗2 + β cos ξ.

This is an expression of the conservation of vorticity. The streamlines here are of
cat’s-eye form and are closed for η̂ < β. Application of the Prandtl–Batchelor theorem
leads to the result

G(η̂) = G0 for η̂ < β,
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where G0 is an unknown constant. At the next order the correction χ1 satisfies

ζ∗
∂χ1

∂ξ
+ β sin ξ

∂χ1

∂ζ∗
=
λ2

0

4

∂2χ0

∂ζ∗2
.

Changing to characteristic coordinates and substituting for χ0 we obtain

±∂χ1

∂ξ̂
=

λ2
0

2
√

2

∂

∂η̂

(
(η̂ − β cos ξ̂)1/2G′(η̂)

)
, (51)

where the new independent variables are ξ̂ and η̂ with ξ = ξ̂. Here the plus and
minus signs refer to the upper and lower parts of the critical layer where ζ∗ >
(2β)1/2(1− cos ξ̂)1/2 and ζ∗ < −(2β)1/2(1− cos ξ̂)1/2, respectively.

In view of the wave-like form of the disturbances, the quantity χ1 must be periodic

in ξ̂ with period 2Nπ. Integrating (51) over this range and applying periodicity we
find that

G′(η̂) =
D±

Î(η̂)
, Î(η̂) =

∫ 2Nπ

0

(η̂ − β cos q)1/2 dq. (52)

The constants D± are determined by the matching with region III, which in terms of
the new variables may be written

∂2Ψ

∂ζ∗2
∼ Â3/2

(
8λ1

λ2
0

ζ∗ + λ̂± + O

(
1

ζ∗

))
as ζ∗ → ±∞, (53)

from (46). The values of D± are therefore fixed as

D± = ±8Nπ
√

2λ1

λ2
0

,

and the leading-order solution takes the form

χ0 = G (η̂) = G0 ± 8Nπ
√

2λ1

λ2
0

∫ η̂

β

ds

Î(s)
,

where we have assumed continuity of vorticity at the edge of the cat’s eye (see Brown
& Stewartson 1978). Examining the matching condition (53) a second time we see
that the vorticity jump is given by

λ̂+ − λ̂− = [[χ0]]
+∞
−∞ =

16Nπ
√

2λ1

λ2
0

∫ ∞
β

ds

Î(s)
,

where [[ ]] denotes the finite part of the jump and the bar denotes the finite part of
the integral, the value of which can be computed to be∫ ∞

β

ds

Î(s)
=

(2β)1/2

8πN
C (1), C (1) ' −5.516.

This integral has arisen in a number of previous critical layer studies (we will meet
it again in § 4) and its value has been computed previously by Haberman (1976)
and Smith & Bodonyi (1982b), among others. It is now possible to determine the
amplitude dependence of the phase shift by use of (48) and we find

φ =
16λ2

0C
(1)

(N2 + α2
0)

3/2
Â−3/2. (54)
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Thus the main effect of increasing the disturbance size is to decrease the phase shift
and this is particularly significant as we move into the fully developed regime which
we consider next.

3.2.2. The large-amplitude weakly nonlinear critical layer structure at larger times

Now that we have determined the amplitude dependence of the phase shift (54) we
can rewrite the large-time neutral wavenumber result (49) as

α0 ∼ Nλ7
0

213λ2
1(C

(1))2
Â3t

−9/2
0 as t0 →∞.

Thus in the fully developed regime the leading-order wavenumber dependence may
be written as

α0 ∼ R−1α̃, with α̃ =
Nλ7

0

213λ2
1(C

(1))2
Â3t̃−9/2 � 1, (55)

and t̃ = R2/9t0 is the O(1) temporal variable in the fully developed regime.
The scaling (41) of the disturbance size δ suggests that as time increases the

perturbation will increase in amplitude and nonlinear effects will become even more
significant within the critical layer. In order to provide us with a clue to the form
the scalings will take in the fully developed regime it is instructive to write δ and the
induced phase shift φ in terms of the new variables α̃ and t̃. We then find from (41),
(54) and (55)

δ ∼ R−2α̃5/3 213/3(λ1C
(1))2/3

N1/3λ
7/3
0

t̃13/6, φ ∼ α̃−1/2 λ
11/2
0

(2N)5/2λ1

t̃−9/4, (56a, b)

as t̃ → 0. This suggests that in the strongly nonlinear fully developed regime we
should seek solutions with a neutral wavenumber of order R−1α̃ and an O(R−2α̃5/3)
pressure disturbance amplitude, leading to an induced O(α̃−1/2) phase shift, where the
parameter α̃ is large and is given specifically in (55). This provides the motivation for
the nonlinear study to be considered in the next section.

4. Nonlinear analysis
Our findings from the previous section indicate that in the fully developed regime

where t ∼ O(R), the disturbance has an O(R−2α̃5/3) pressure amplitude and an O(R−1α̃)
wavenumber where α̃ � 1. Considering the Reynolds number dependence first we
write

∂

∂t
= R−1 ∂

∂t̃
,

∂

∂x
= R−1 ∂

∂x̃
,

and we scale the velocities and pressure in the form

u = ũ(r, θ, x̃, t̃) + · · · , v = R−1ṽ(r, θ, x̃, t̃) + · · · , (57a, b)

w = R−1w̃(r, θ, x̃, t̃) + · · · , p = p0 − R−14x+ R−2p̃(r, θ, x̃, t̃) + · · · . (57c, d )

Substitution of these expansions into the Navier–Stokes equations (1) leads to the
following nonlinear viscous balances

∂ũ

∂x̃
+
∂ṽ

∂r
+
ṽ

r
+

1

r

∂w̃

∂θ
= 0, (58a)
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∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂r
+
w̃

r

∂ũ

∂θ
= 4 +

∂2ũ

∂r2
+

1

r

∂ũ

∂r
+

1

r2

∂2ũ

∂θ2
, (58b)

∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂r
+
w̃

r

∂ṽ

∂θ
− w̃2

r

= −∂p̃
∂r

+
∂2ṽ

∂r2
+

1

r

∂ṽ

∂r
+

1

r2

∂2ṽ

∂θ2
− ṽ

r2
− 2

r2

∂w̃

∂θ
, (58c)

∂w̃

∂t̃
+ ũ

∂w̃

∂x̃
+ ṽ

∂w̃

∂r
+
w̃

r

∂w̃

∂θ
+
ṽw̃

r

= −1

r

∂p̃

∂θ
+
∂2w̃

∂r2
+

1

r

∂w̃

∂r
+

1

r2

∂2w̃

∂θ2
− w̃

r2
+

2

r2

∂ṽ

∂θ
, (58d)

which we will refer to as the reduced Navier–Stokes equations (RNS). Note that the
Reynolds number does not appear in these equations and that one possible solution
of the system is simply the HPF profile ũ = 1 − r2, ṽ = w̃ = 0. The RNS system
(58) will act as our governing equations for the rest of the section. Now taking into
account the α̃-dependence, we seek disturbances proportional to

exp iξ̃,

with ξ̃ = α̃(x̃− c̃t) +Nθ, and α̃� 1, where the pressure perturbation has amplitude

α̃5/3A0(̃t).

We will assume that the wave speed c ∼ O(1) for O(1) values of t̃ and we write c = c0

to leading order. In view of the results obtained for large t0 in the previous section
we anticipate that for small t̃

A0 ∼ 213/3(λ1C
(1))2/3

N1/3λ
7/3
0

t̃ 13/6, c0 ∼ 4N

λ0

t̃ 3/2, (59a, b)

from (33), (56a, b). We will see later that these asymptotes are indeed obtained in the
small-̃t limit of the current nonlinear problem: for now we concentrate on t̃ ∼ O(1).
The basic flow remains the impulsively started flow given in § 1 and has the form

ũ0 = 1− r2 − 8

∞∑
n=1

J0(jonr)

j3
onJ1(jon)

exp(−j2
ont̃), (60)

in the current notation. Since we are now considering the development at O(1) times,
the basic flow can no longer be written in terms of the two-tier structure (4) that
was exploited in the previous sections. Nevertheless it still proves possible to study
analytically the nonlinear stability of ũ0 to the long waves introduced above even
when ũ0 takes the above more complicated form (60).

For t̃ ∼ O(1), the stability structure consists of three main regions. In the majority
of the pipe the flow is predominantly inviscid and the behaviour is similar to that in
region I of the linear stability structure. Since we are assuming that the wave speed
is O(1) however, the critical layer is no longer sited near the wall. As in the linear
stability structure we require a wall layer in order both to satisfy the no-slip condition
and to balance the phase shift across the critical layer which, as we shall see later,
is asymptotically small (specifically of O(α̃−1/2), as predicted in § 3), in the nonlinear
setting considered here.
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4.1. The inviscid region

We begin by considering the flow in the majority of the pipe where the radial variable
r is O(1). Since the pressure amplitude is known, the magnitude of the velocity
perturbations can also be determined and the appropriate expansions are

ũ = ũ0(r, t̃) + α̃−1/6u1M(r, t̃) + α̃−1/3(ũ2(r, θ, x̃, t̃) + ũ2M(r, t̃))

+ · · ·+ α̃−5/6ũ5(r, θ, x̃, t̃) + · · · , (61a)

ṽ = α̃2/3ṽ2(r, θ, x̃, t̃) + · · ·+ α̃1/6ṽ5(r, θ, x̃, t̃) + · · · , (61b)

w̃ = α̃5/6w1M(r, t̃) + α̃2/3(w̃2(r, θ, x̃, t̃) + w̃2M(r, t̃)) + · · ·+ α̃1/6w̃5(r, θ, x̃, t̃) + · · · , (61c)

p̃ = α̃5/3(p̃2(r, θ, x̃, t̃) + p̃2M(r, t̃)) + · · ·+ α̃7/6p̃5(r, θ, x̃, t̃) + · · · , (61d)

with α̃ � 1. The subscript M refers to a mean flow correction whose size can be
inferred from the vorticity jump in the weakly nonlinear critical layer of § 3. The
appearance of the terms with subscript 5 anticipate the occurrence of the induced
O(α̃−1/2) phase shift which we will discuss in more detail later. The fundamental
disturbances (ũ2, ṽ2, w̃2, p̃2) take the form of the real parts of

A0(̃t)(F2(r), iG2(r), H2(r), Q2(r)) exp(iξ̃) (62)

respectively. One of the aims of the analysis is to determine the real amplitude A0 of
the neutral modes and its dependence upon t̃ and to confirm the asymptotic results
(59a, b). In the process the phase shift across the critical layer will be calculated and
we will show that its small-̃t form is in accordance with (56a, b). As in the linear
analysis, because α̃c� 1/̃t, the time t̃ can be considered purely as a parameter in the
problem and derivatives with respect to this parameter can be neglected to the order
to which we work. Consequently the t̃-dependence in the mean flow terms of (61) will
be suppressed in what follows. As remarked above we take the wave speed to be O(1)
and write

c = c0 + O(α̃−1/2). (63)

As part of the analysis we will determine the leading-order wave speed c0 of the
nonlinear neutral modes. We expect that as t̃ → 0, c0 will decrease according to
(59a, bb).

We substitute the expansions (61), (62), (63) into the governing equations (58) and
obtain

F2 + G′2 +
G2

r
+
NH2

r
= 0, (ũ0 − c0)F2 + G2ũ

′
0 = 0, (64a, b)

(ũ0 − c0)G2 = Q′2, (ũ0 − c0)H = −NQ2

r
. (64c, d )

These equations should be compared with the inviscid balances (9) occurring in the
linear structure of § 2. As explained in that section we can eliminate F2, G2, H2 and
derive an equation solely for the pressure:

(ũ0 − c0)

(
Q′′2 +

1

r
Q′2 − N2

r2
Q2

)
= 2ũ′0Q

′
2. (65)

Observe that this is effectively the Rayleigh equation derived in § 2 with α0 = 0: we
will refer to it as the reduced Rayleigh equation. The appropriate boundary conditions
are (assuming N 6= 0)

Q2 = 0 on r = 0, Q′2 = 0 on r = 1. (66)
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The first condition prevents the occurrence of a singularity on the pipe axis r = 0,
while the second provides the inviscid condition of tangential flow at the wall (as
in the linear case). Clearly we can see from (64) that the velocity components are
singular at the radial location where ũ0 = c0. We define rc such that

ũ0 = c0 when r = rc,

and note that rc depends on t̃. We calculate from (64) and (65) that as r → rc−
F2 ∼ N2p̂

r2
c τ0

(
1

ε̃
−
(

1− 2τ1

τ0

)
ln ε̃− 3j3

N2
− 1

3

(
1− 2τ1

τ0

))
+ O(̃ε ln ε̃), (67a)

G2 ∼ N2p̂

rcτ0

(
1−

(
1− 2τ1

τ0

)
ε̃ ln ε̃−

(
1

3
+

3j3
N2

+
1

3

τ1

τ0

)
ε̃

−
(

1− τ1

τ0

− 2

(
τ1

τ0

)2
)
ε̃2 ln ε̃

)
+ O(̃ε2), (67b)

H2 ∼ −Np̂
rcτ0

(
1

ε̃
+

(
1− τ1

τ0

))
+ O(̃ε), (67c)

Q2 ∼ p̂
(

1− N2

2
ε̃2 +

N2

3

(
1− 2τ1

τ0

)
ε̃3 ln ε̃+ j3ε̃

3

+
N2

3

(
1− 2τ1

τ0

)(
3

4
+

3

2

τ1

τ0

)
ε̃4 ln ε̃

)
+ O(̃ε4), (67d)

where the small parameter ε̃ and the skin-friction and curvature coefficients τ0, τ1 are
defined by

ε̃ =
rc − r
rc

, τ0 = −rcũ′0(rc), τ1 = 1
2
r2
c ũ
′′
0(rc), (68)

and p̂ = Q2(rc). The quantity j3 is unknown but can be found numerically by solving
the reduced Rayleigh equation (65) subject to the boundary conditions (66). In
addition a jump condition is required across the critical layer arising from the phase
shift, which we write in the form α̃−1/2Φ where Φ is an O(1) quantity to be determined.
The implication of this is that terms of the form

Re(ln(rc − r) exp(iξ̃)) for r < rc (69a)

are replaced by

Re((ln(r − rc) + iα̃−1/2Φ) exp(iξ̃)) for r > rc. (69b)

In other words, ln(rc − r) cos ξ̃ is replaced by ln(r − rc) cos ξ̃ − α̃−1/2Φ sin ξ̃ as we
cross the critical layer. We therefore see by comparison with the expansions (61) that
(ũ5, ṽ5, w̃5, p̃5) will be the lowest-order terms to undergo a non-zero phase shift. As far
as the solution of the reduced Rayleigh equation (65) is concerned, the appropriate
jump condition is simply that Q2 remains real as the critical layer is crossed. The
solution of (65) subject to the boundary conditions (66) and the jump condition will
determine the value of c0 for given values of N and t̃. In general a numerical solution
is necessary and we will return to this later in § 5. Next we investigate the dynamics
of the critical layer with the aim of determining the scaled phase shift Φ analytically
in terms of the disturbance amplitude A0.
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4.2. The nonlinear critical layer

The analysis in this section follows closely the work of SB and we adopt a similar
notation to theirs wherever possible. It should be stressed however that the results
presented here are for a more complicated basic flow and cannot simply be extracted
from their work.

We observe from the inviscid region that as we approach the critical layer the
fundamental azimuthal disturbance ∼ α̃2/3ε̃−1, while the pressure ∼ α̃5/3. In the critical
layer we balance nonlinearity against pressure gradients, with viscosity now being a
higher-order effect, and so we have the balance p̃ ∼ w̃2 from the azimuthal momentum
equation (58d ). This implies that ε̃ ∼ α̃−1/6 in the critical layer and so we write

r = rc + α̃−1/6Y with Y ∼ O(1).

The velocities and pressure expand as follows:

ũ = c0 + α̃−1/6U1(Y , ξ̃) + (α̃−1/3 ln α̃−1/6)U3/2(Y , ξ̃) + α̃−1/3U2(Y , ξ̃)

+ · · ·+ α̃−5/6U5(Y , ξ̃) + · · · , (70a)

ṽ = α̃2/3V1(Y , ξ̃) + (α̃1/2 ln α−1/6)V3/2(Y , ξ̃) + α̃1/2V2(Y , ξ̃)

+ · · ·+ V5(Y , ξ̃) + · · · , (70b)

w̃ = α̃5/6W1(Y , ξ̃) + (α̃2/3 ln α̃−1/6)W3/2(Y , ξ̃) + α̃2/3W2(Y , ξ̃)

+ · · ·+ α̃1/6W5(Y , ξ̃) + · · · , (70c)

p̃ = α̃5/3P1(Y , ξ̃) + (α̃3/2 ln α̃−1/6)P3/2(Y , ξ̃) + α̃3/2P2(Y , ξ̃)

+ · · ·+ α̃P5(Y , ξ̃) + · · · . (70d)

Substitution of these expansions into the RNS equations (58) yields the following
leading-order nonlinear balances:

U1ξ̃ + V1Y +
NW1ξ̃

rc
= 0, (71a)

U1U1ξ̃ + V1U1Y +
NW1U1ξ̃

rc
= 0, P1Y = 0, (71b, c)

U1W1ξ̃ + V1W1Y +
NW1W1ξ̃

rc
= −NP1ξ̃

rc
. (71d )

Thus the main pressure disturbance is constant throughout the layer and assumes the
value

P1 = A0p̂ cos ξ̃ + p̃2M(rc),

from (61), (62) and (67). The appropriate boundary conditions on the velocities in
order to match with the inviscid regions either side of the critical layer can be deduced
from the asymptotic behaviour of (67). These take the form

U1 ∼ −τ0

rc
Y + ũ1M(rc±)− A0p̂N

2

rcτ0Y
cos ξ̃, (72a)

V1 ∼ −A0p̂N
2

rcτ0

sin ξ̃, W1 ∼ A0p̂N

τ0Y
cos ξ̃ + w̃1M(rc±), (72b, c)
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as Y → ±∞, with the first term in (72a) arising from the basic flow. As may be
anticipated by comparison with the weakly nonlinear critical layer, this leading-order
problem can be solved analytically and this paves the way for the higher-order
contributions and in particular the phase shift to be determined. The solution is of
the ‘cat’s-eye’ form:

U1 = −N
rc
G(η̃), V1 = −β̃ sin ξ̃, W1 = −τ0

N

(
Y − rcb

τ0

)
+ G(η̃), (73a–c)

cf. (44). Here we use the notation

β̃ =
A0p̂N

2

rcτ0

, b = ũ1M(rc±) +
N

rc
w̃1M(rc±),

with η̃ a function of Y and ξ̃ given by

η̃ =
τ0

2rc

(
Y − rcb

τ0

)2

+ β̃ cos ξ̃.

Note here the similarity to the leading-order large-amplitude solution G(η̂) found in
the weakly nonlinear critical layer of § 3. As in that case, the function G(η̃) will be
determined at higher order, but to match with the inviscid region we require the
asymptotic behaviour

G(η̃) ∼ ± (2τ0rc)
1/2

N
η̃1/2 + w̃1M(rc±) as η̃ →∞, (74)

implied by (72c) and (73c). As in our earlier work, the plus sign here refers to the
upper part of the critical layer where in this case Y − rcb/τ0 > (2rcβ̃(1− cos ξ̃)/τ0)

1/2,

and the minus sign to the lower part wherein Y − rcb/τ0 < −(2rcβ̃(1− cos ξ̃)/τ0)
1/2.

In order to determine the phase shift we need to examine the behaviour of higher-
order terms. To facilitate this we follow our earlier ideas and define a skewed velocity

ūm = Um +
N

rc
Wm (75)

for m = 1, 3/2, 2, . . . . The equations governing the behaviour of higher-order terms
may then be expressed in the form

ūmξ̃ + VmY =F(1)
m , (76a)

ū1ūmξ̃ + V1ūmY + Vmū1Y + (N/rc)
2Pmξ̃ =F(2)

m , (76b)

PmY =F(3)
m , (76c)

U1Wmξ̃ +UmW1ξ̃ +V1WmY +VmW1Y +
N

rc
(W1Wmξ̃ +WmW1ξ̃)+

N

rc
Pmξ̃ =F(4)

m . (76d)

The quantities F(n)
m (m = 1, 3/2, 2, . . . ; n = 1, 2, 3, 4) are forcing terms arising from

the RNS equations which can be written down for any particular m and n. If we
differentiate (76b) with respect to Y and use the leading-order solutions (73) we can
obtain an equation governing the behaviour of the shear ūmY . This takes the form

∓
(

2τ0

rc

)1/2

(η̃ − β̃ cos ξ̃)1/2 ∂ūmY

∂ξ̂
=
∂F(2)

m

∂Y
− N2

r2
c

∂F(3)
m

∂ξ̃
+
τ0

rc
F(1)

m . (77)

Here the transformation of (ξ̃, Y ) to characteristic variables (ξ̂, η̃), with ξ̃ = ξ̂ has
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been performed so that

∂

∂ξ̃
=

∂

∂ξ̂
− β̃ sin ξ̃

∂

∂η̃
,

∂

∂Y
= ±

(
2τ0

rc

)1/2

(η̃ − β̃ cos ξ̃)1/2 ∂

∂η̃
.

A similar equation for Wm can be obtained and takes the form

∓
(

2τ0

rc

)1/2

(η̃ − β̃ cos ξ̃)1/2 ∂Wm

∂ξ̂
= β̃ sin ξ̃G′(η̃)ūm

+Vm

(
τ0

N
∓
(

2τ0

rc

)1/2

(η̃ − β̃ cos ξ̃)1/2G′(η̃)

)
+F(4)

m − N

rc
Pmξ̃. (78)

This equation enables Wm to be determined once the shear term ūmY is found from
(77). The corresponding equations to (77) and (78) in SB are their (3.10a) and (3.10b).

In order to induce a phase shift across the critical layer we require the solution for
(ūm,Wm, Pm) to possess an odd part about ξ̃ = π, with Vm having an even part. The
task here is to find the value of m at which this first occurs. Although our earlier
studies suggest this will not occur until m = 5 it is still vital to consider the smaller
values of m first. As in SB the m = 3/2 solution does not give a phase shift and
will not be considered further here. Next we consider the m = 2 stage for which the
forcing terms take the form

F(1)
2 = −V1

rc
+
NYW1ξ̃

r2
c

, (79a)

F(2)
2 =

NYW1U1ξ̃

r2
c

+
N

rc

(
NYW1W1ξ̃

r2
c

− V1W1

rc
+
NY P1ξ̃

r2
c

)
, (79b)

F(3)
2 =

W 2
1

rc
, F(4)

2 =
NYW1W1ξ̃

r2
c

− V1W1

rc
+
NY P1ξ̃

r2
c

. (79c, d )

Here the controlling equations are (76) with m = 2 subject to the following matching
conditions with the inviscid regions as Y → ±∞:

U2 ∼ τ1

r2
c

Y 2 + Y ũ′1M(rc±) + ũ2M(rc±)

+
N2A0p̂

τ0r2
c

(
−
(

1− 2τ1

τ0

)
ln

∣∣∣∣Yrc
∣∣∣∣− 1

3

(
1− 2τ1

τ0

)
− 3j3
N2

)
cos ξ̃, (80a)

V2 ∼ −A0p̂N
2

τ0rc

((
1− 2τ1

τ0

)
Y

rc
ln

∣∣∣∣Yrc
∣∣∣∣+

(
1

3
+

3j3
N2

+
1

3

τ1

τ0

)
Y

rc

)
sin ξ̃, (80b)

W2 ∼ Y w̃′1M(rc±)− p̂NA0

rcτ0

(
1− τ1

τ0

)
cos ξ̃ + w̃2M(rc±), (80c)

implied by the asymptotic behaviour (67). In this case equation (77) for the shear ū2Y

with forcing terms given by (79) can be integrated with respect to ξ̂ to yield

−2r1/2
c ū2Y = κ(η̃)± (η̃ − β̃ cos ξ̃)1/2

(
− 2

rc
(2τ0)

1/2

+
8N2

r2
c

GG′

(2τ0)1/2
− 2Nb

rc

(
2

τ0

)1/2

G′
)

+
4Nβ̃G′

r
3/2
c

cos ξ̃, (81)



364 A. G. Walton

with the function κ(η̃) as yet unknown. From the boundary conditions (80) we deduce

ū2Y ∼ 2τ1

r2
c

Y + λ̃± as Y → ±∞, (82)

with λ̃± = ũ′1M(rc±) + (N/rc)w̃
′
1M(rc±) being constants in the upper and lower regions

of the critical layer. The quantity λ̃+ − λ̃− is the equivalent of the vorticity jump

λ̂+ − λ̂− found in the weakly nonlinear critical layer of § 3. Applying the boundary
condition (82) and the asymptotic form (74) for G to (81) we find that a requirement
of the shear term κ(η̃) is

κ (η̃) ∼ ∓ 23/2

rcτ
1/2
0

(2τ1 + τ0)η̃
1/2 as η̃ →∞. (83)

It is worth noting here that for fully developed HPF we have 2τ1 + τ0 = 0, so that
SB’s analysis requires κ→ 0 as η̃ →∞.

Provided the forcing terms F(1)
m ,F(2)

m ,F(3)
m ,F(4)

m remain odd, odd, even, odd respec-
tively about ξ̃ = π, there will be no phase shift. This pattern will continue until
viscous terms begin to appear in the forcing. As in SB this occurs at the m = 4 stage
and although it turns out that there is no overall phase shift at this level we are able
to determine the function G(η̃) there which then completely fixes the m = 1 solution.

Using ‘O’ or ‘E’ to represent contributions that are odd or even about ξ̃ = π, the
forcing terms at the m = 4 stage may be written in the simple form

F(1)
4 = ‘O’, F(2)

4 = U1Y Y +
N

rc
W1Y Y + ‘O’, (84a–d )

F(3)
4 = ‘E’, F(4)

4 = W1Y Y + ‘O’,

and the shear equation (77) takes the form

∓
(

2τ0

rc

)1/2

(η̃ − β̃ cos ξ̃)1/2 ∂ū4Y

∂ξ̂
=

∂

∂Y
(U1Y Y +

N

rc
W1Y Y + ‘O’)− N2

r2
c

∂

∂ξ̃
(‘E’) + ‘O’

= ū1Y Y Y + ‘O’ = ‘O’,

since ū1Y Y Y is zero from (73) and (75). Therefore we see that ū4Y is ‘E’ and hence V4

is ‘O ’ from (76a) and P4 is ‘E’ from (76c) and (84a, dc). After some manipulation the
equation governing W4 reduces to

∓∂W4

∂ξ̂
=

(
2τ0

rc

)1/2
∂

∂η̃

(
(η̃ − β̃ cos ξ̃)1/2G′(η̃)

)
+ ‘O’,

which may be compared with the weakly nonlinear result (51). Thus upon integration
we find the solution

∓W4 =

(
2τ0

rc

)1/2
∂

∂η̃

(
G′(η̃)

∫ ξ̂

0

(η̃ − β̃ cos q)1/2 dq

)
+ C4(η̃) + ‘E’,

with C4(η̃) an arbitrary function. We are now in a position to determine the function
G(η̃) by imposing that W4 has periodicity of 2Nπ in ξ̃, i.e. 2π in θ. Thus

G′(η̃) =
D̃±

I(η̃)
, with I(η̃) =

∫ 2Nπ

0

(η̃ − β̃ cos q)1/2dq, (85)

cf. equation (52). The constants D̃± can be determined from the asymptotic form (74)
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as

D̃± = ± (2τ0rc)
1/2 π, (86)

by letting η̃ → ∞ in (85) and using I ∼ 2Nπη̃1/2 as η̃ → ∞. From our expression for
G′ we can show that

G(η̃) ∼ G0 ± (2τ0rc)
1/2π

(
η̃1/2

Nπ
+ J̃

)
as η̃ →∞, (87)

with

G(β̃) = G0, J̃ =
(2β̃)1/2

8Nπ
C (1), (88)

where we have uniform vorticity G0 within the cat’s eye as in the weakly nonlinear
critical layer of § 3 and C (1) ' −5.516 is the same constant that we encountered there.
Hence the finite part of the jump in G(η̃) across the critical layer is determined as

[[G(η̃)]]+∞
−∞ = 2(2τ0rc)

1/2πJ̃. (89)

This result will be useful when we turn to calculating the phase shift presently.
Although both W4 and U4 have non-zero odd parts, these tend to zero as Y → ±∞,

yielding no overall phase shift. The final stage we need to consider (as anticipated
earlier) is m = 5 where the shear equation takes the form

∓
(

2τ0

rc

)1/2

(η̃ − β̃ cos ξ̃)1/2 ∂ū5Y

∂ξ̂

= ū2Y Y Y − N

r2
c

V1W4Y +
Nτ0

r3
c

Y W4ξ̃ − 2N2

r3
c

∂

∂ξ̃
(W1W4) + ‘O’. (90)

By substituting for ū2Y from (81), integrating with respect to ξ̂ and demanding
periodicity, we can derive an equation governing the behaviour of the shear term κ(η̃)
first introduced in (81). Substituting for G′ from (85) and integrating with respect to
η̃ we finally obtain

τ0rc

4N2
κ′(η̃) = ∓2πN

rc

(2τ0)
1/2

D̃±
η̃(G′(η̃))3 − τ0

Nr
1/2
c

η̃G′′(η̃)− D±2
D̃±

G′(η̃), (91)

which reduces to SB’s equation (3.20) in the case of HPF. Use of the asymptotic
condition (87) for G′ and (86) for D̃± implies that

τ0rc

4N2
κ′ ∼

(
∓(2τ0)

1/2 τ0

4N2
− D±2

2Nπ

)
η̃−1/2 as η̃ →∞, (92)

thus fixing the values of the constants D±2 as

D±2 = ±(2τ0)
1/2 π

N
τ1,

from comparison of (83) with (92). Our expression for κ′ can now be written as

τ0rc

4N2
κ′(η̃) = − 2N

r
3/2
c

η̃G′3 − τ0

Nr
1/2
c

η̃G′′ − τ1

Nr
1/2
c

G′. (93)

Integrating this equation and applying the uniform vorticity condition κ = κ0 when
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η̃ = β̃ we obtain

τ0rc

4N2
(κ(η̃)− κ0) = − τ0

Nr
1/2
c

(η̃G′(η̃)− G(η̃)− β̃G′(β̃) + G0)

− τ1

Nr
1/2
c

(G(η̃)− G0)− 2N

r
3/2
c

∫ η̃

β̃

q
(
G′(q)

)3
dq. (94)

Letting η̃ →∞, and using the asymptotic form (87) for G we find

τ0rc

4N2
(κ(η̃)− κ0) ∼ ∓ (2τ0)

1/2

2N2
η̃1/2(τ0 + 2τ1)± (2τ0)

1/2 π

N
(τ0 − τ1)J̃

±τ
3/2
0 β̃1/2π

4N2
∓ (2τ0)

3/2

4N2
β̃1/2(C (2) − 2).

Here, the term proportional to η̃1/2 matches with the earlier requirement of (83) while
the final term on the right-hand side arises from the integral in (94), where

C (2) =
8π3N3

β̃1/2

∫ ∞
β̃

(
s

I3
− 1

8π3N3s1/2

)
ds ' 0.1564,

from numerical computation. This final term appears to have been neglected in SB’s
analysis. The finite part of the jump in κ(η̃) across the critical layer is therefore given
by

τ0rc

4N2
[[κ(η̃)]]+∞

−∞ = 2(2τ0)
1/2 π

N
(τ0 − τ1)J̃ +

τ
3/2
0

2N2
β̃1/2π − (2τ0)

3/2

2N2
(C (2) − 2)β̃1/2.

Hence, using (81) and the expression (88) for J̃ , we determine the vorticity jump
across the critical layer as

λ̃+ − λ̃− = [[ū2Y ]]+∞
−∞ = − 1

2r
1/2
c

[[κ(η̃)]]+∞
−∞

= −τ
1/2
0 β̃1/2

r
3/2
c

((
2− τ1

τ0

)
C (1) + π + 23/2(2− C (2))

)
. (95)

We are now finally in a position to determine the phase shift explicitly. If we write

[[ū5]]
+∞
−∞ =

∞∑
n=1

(βn sin nξ̃ + γn cos nξ̃),

then the coefficient of relevance to the phase shift is β1(= φ̃ say) given by

φ̃ =
1

Nπ

∫ 2Nπ

0

[[ū5]]
+∞
−∞ sin ξ̃ dξ̃ =

1

Nπ

∫ ∞
−∞

(∫ 2Nπ

0

ū5Y sin ξ̃ dξ̃

)
dY .

By using our expression for ū5Y (deduced from (90)) and integrating we eventually
find

β̃φ̃ = −2(λ̃+ − λ̃−) +
4

r2
c

(2τ0rc)
1/2NπJ̃, (96)

using an identical approach to that explained in an appendix to SB. This is the
strongly nonlinear equivalent of the result (48). Substitution of (88) and (95) into (96)
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leaves the phase shift satisfying

β̃φ̃ =

(
τ0β̃

r3
c

)1/2((
5− 2τ1

τ0

)
C (1) + 2π + 25/2(2− C (2))

)
. (97)

Now, using the asymptotic forms for U2,W2 in (80) we deduce that, since the coefficient
of the logarithmic term in the asymptotic expression for ū2 is −N2A0p̂(1−2τ1/τ0)/r

2
c τ0,

we must have the following relation between φ̃ and Φ:

φ̃ =
A0p̂N

2

r2
c τ0

(
1− 2τ1

τ0

)
Φ.

Substituting this relation into (97) we find the following expression for the scaled
phase shift Φ as a function of disturbance amplitude A0:

Φ =
τ2

0rc

A
3/2
0 p̂3/2N3

(
1− 2τ1

τ0

) ((5− 2τ1

τ0

)
C (1) + 2π + 25/2(2− C (2))

)
. (98)

Expression (98) should be compared with equation (3.25) of SB with allowance made
for the final term involving C (2) which was missed in their analysis. This phase shift is
exactly counterbalanced by that produced by the viscous wall layer in a similar way
to the upper branch linear stability problem, and this balancing will determine the
threshold amplitude A0 for the nonlinear instability mechanism to occur.

4.3. The viscous wall layer and the balancing of phase shifts

The dynamics of the wall layer, which is of O(α̃−1/2) thickness, are very similar to
those of region IV in the linear analysis of § 2 (although the current disturbance is
larger), so the details are not presented here. Instead we simply quote the result we
require, namely that

ṽ ∼ −α̃2/3N
2A0

c0

(1− r) sin ξ̃ + α̃1/6 N
2A0

21/2c
3/2
0

(cos ξ̃ + sin ξ̃) as r → 1, (99)

which should be compared with the linear result (29). The first term here matches
with the behaviour of G2 in the inviscid region, while the second term implies that

ṽ5 → N2A0

21/2c
3/2
0

(cos ξ̃ + sin ξ̃) as r → 1, (100)

from comparison of (99) with (61). Thus we see from (99) that the phase shift induced
in the normal velocity disturbance by the wall layer is in tune with that induced
across the critical layer. Now that we have expression (100) we can determine the
disturbance amplitude and its dependence upon t̃ precisely.

4.4. Determination of the nonlinear disturbance amplitude

Our critical layer analysis has revealed that the components (ũ5, ṽ5, w̃5, p̃5) contain
terms of the form

A0(F5(r) sin ξ̃, G5(r) cos ξ̃, H5(r) sin ξ̃, Q5(r) sin ξ̃)
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where G5(1) = N2/(21/2c
3/2
0 ) from (100). After substitution into the RNS equations

and some manipulation we find that Q5 satisfies the same equation as Q2, namely

(ũ0 − c0)

(
Q′′5 +

1

r
Q′5 − N2

r2
Q5

)
= 2ũ′0Q

′
5,

subject to

Q5(0) = 0, Q′5(1) = − N2

21/2c
1/2
0

, (101)

and the jump condition

[[Q5]]
+
− = −N

2p̂

3

(
1− 2τ1

τ0

)(
rc − r
rc

)3

Φ, (102)

deduced from the pressure behaviour in (67d) and the jump (69). Consideration of
the Wronskian of Q2 and Q5 and the boundary conditions (101) leads us to the result

r

(r2
c − r2)2

(Q2Q
′
5 − Q5Q

′
2) =

{ −N2/(21/2c
5/2
0 ), r > rc

0, r < rc.

Thus, upon applying the jump condition (102) we obtain

Φ = − τ3
0

p̂221/2c
5/2
0 (τ0 − 2τ1)

, (103)

giving the phase shift in terms of the quantities p̂ and c0 which can be calculated
numerically. Equating our two expressions (98) and (103) for Φ we obtain

A0 =
21/3r

2/3
c p̂1/3c

5/3
0

N2

((
5− 2τ1

τ0

)
(−C (1))− 2π − 25/2(2− C (2))

)2/3

, (104)

where all the quantities on the right-hand side are either known analytically or can be
easily computed numerically. Since the basic flow is time-dependent, these quantities
all depend on t̃ and so (104) gives the development of A0 with time. This result should
be compared with the corrected form of SB’s equation (3.26) for the special case of
HPF. The asymptotic structure of the nonlinear neutral modes is shown in figure 3
where t̃ is O(1).

To determine c0 and p̂ we need to solve the reduced Rayleigh equation (65) numer-
ically. This is carried out in the next section together with the explicit determination
of the amplitude of the neutral modes.

5. Numerical solution of the reduced Rayleigh equation
The numerical problem under study here is the solution of

(ũ0 − c0)

(
Q′′2 +

1

r
Q′2 − N2

r2
Q2

)
= 2ũ′0Q

′
2 (0 6 r 6 1, 0 6 t̃ < ∞), (105)

where ũ0 is given by (60) and depends on r and t̃ with primes here representing
differentiation with respect to r. The boundary conditions are

Q2(0) = 0, Q′2(1) = 0.

In addition we need to apply the condition of zero phase shift at r = rc where
ũ0(rc) = c0. From the asymptotic expansion (67d) of Q2 as r → rc− we can derive the
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O(Rá̃–1)

Pipe axis

Inviscid region

Nonlinear critical layer (§4.2)

O(á̃–1/6)

Inviscid region
(§4.1)

O(á̃–1/2) Wall layer (§4.3)

O(1)

O(1)

r = rc

r = 0

r = 1

Figure 3. The nonlinear neutral mode structure of § 4 for t = Rt̃ with t̃ of O(1) and α̃� 1.

jump in Q′2/Q2 as[
Q′2
Q2

]+

−
∼ −2N2

rc
|̃ε|+ 2N2

rc

(
1− 4

(
τ1

τ0

)2
)
|̃ε|3 ln |̃ε|, (106)

where ε̃ = (rc − r)/rc.
Our numerical approach is as follows. First for given values of time t̃ and azimuthal

wavenumber N we guess a value for the critical layer location rc in the range
0 < rc < 1. Then near the regular singular point at r = 0 we expand Q2 in a power
series and calculate the quantities Q2(r0), Q

′
2(r0) where r0 is small. These values are used

to initiate a Runge–Kutta scheme which advances the solution as far as r = rc(1− ε̃)
with ε̃ suitably small. Next, the jump condition (106) allows us to calculate Q2 and
its derivative at r = rc(1 + ε̃). Finally, the Runge–Kutta scheme is employed a second
time to compute the solution for rc(1 + ε̃) < r 6 1. In particular we obtain a value
for Q′2(1). Newton iteration on rc is then applied until Q′2(1) = 0 to some acceptable
tolerance. Once the value of rc is found, the value of Q2(1) is known. Our theory
normalizes this value to unity so the value of p̂ follows from p̂ = Q2(rc)/Q2(1). The
wave speed c0 can then be found from the relation ũ0(rc) = c0 and the amplitude
of the neutral mode can be determined from (104). The procedure is repeated for a
range of values of t̃ and N.

The results for the critical layer location rc versus t̃ are shown for various values of
N in figure 4(a, b). It appears that modes with N > 2 only exist up to a small value
of t̃ = tc say, with tc decreasing as N increases. As t̃ → tc− we see that rc → 0 and
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rc

t̃
0 1 2 3

0.8

0.9

1.0

N = 1
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0 0.05 0.10
t̃

0.5

0.6

0.7

0.8

0.9

1.0

N = 3

N = 2
rc

Figure 4. (a) Critical layer location rc versus t̃ for N = 1; (b) rc versus t̃ for higher azimuthal
wavenumbers, N = 2 and N = 3.

the critical layer therefore moves towards the pipe axis. The behaviour for N = 1
however, is quite different. In this case there is no cut-off in t̃, and we see that rc
decreases monotonically from unity to a value of about 0.846 as t̃ → ∞. In figure 5
we show the corresponding behaviour of the wave speed for N = 1 with c0 increasing
monotonically to approximately 0.284 as t̃→∞. Figure 6 presents the wave amplitude
A0 (calculated from (104)) as a function of t̃ for the N = 1 mode, and we see again
monotonic growth from zero amplitude at t̃ = 0 to a finite value as t̃→∞.
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t̃

N = 1

1 2 30

0.1

0.2
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c0

Figure 5. Wave speed c0 versus t̃ from the results of the computations of § 5 for azimuthal
wavenumber N = 1.

t̃

N = 1
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1.0

Figure 6. Scaled neutral wave amplitude A0 as a function of t̃ for N = 1.

Of particular interest to us here are the limits t̃ → 0, t̃ → ∞ since, as we shall
see, the former matches back to the weakly nonlinear disturbance theory of §§ 2 and
3 while the latter limit leads to the fully developed HPF whose stability properties
are certainly not fully understood. We examine both limits in some detail in the next
section.
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6. The limiting cases
6.1. The limit t̃→ 0

When t̃ is small the basic flow acquires the two-tiered form exploited in the linear
analysis of § 2. In terms of the current notation we have at leading order

ũ0 =

{
4̃t, r ∼ O(1)
4̃tuB(η), r = 1− t̃1/2η, (107)

with uB(η) given in (5). The inviscid region described in § 4.1 splits into three subregions
in a very similar way to the linear structure outlined in § 2. Since the analysis is almost
identical we present only brief details here.

6.1.1. The inviscid subregions

Region I has r of O(1) and the reduced Rayleigh equation simplifies to

Q′′2 +
1

r
Q′2 − N2

r2
Q2 = 0,

so that the solution which is regular at r = 0 is Q2 = rN , where, as in § 2, we have
normalized so that the pressure is unity at the pipe wall.

In region II the basic flow adopts its lower-tier form and we have

r = 1− t̃1/2η, Q2 = 1 + t̃1/2q1(η) + · · · , with q′1(η) = −N(uB(η))2.

Region III balances the near-wall shear flow with the wave speed and has

uB(η) = t̃1/2λ0Y + · · · , r = 1− t̃Y , (108a, b)

c0 = 4̃t3/2c̃0 + · · · , Q2 = 1 + t̃2Q̂1(Y ) + · · · , (108c, d )

with λ0 = 2/
√
π. From substitution into the reduced Rayleigh equation (65), we find

Q̂′1(Y ) = −N
2

λ0

(λ0Y − c̃0)−N(λ0Y − c̃0)
2.

The inviscid requirement that Q̂′1(0) = 0 leads to the eigenrelation

N2c̃0

λ0

−Nc̃2
0 = 0,

with solution c̃0 = N/λ0 = N
√
π/2. We therefore obtain the result

c0 ∼ 4N

λ0

t̃3/2 as t̃→ 0, (109)

in accordance with the expectation (59b). In addition the asymptotic form (109) agrees
well with that obtained from the computations of § 5 as t̃→ 0. It is also worth noting
that since α̃c ∼ O(̃t−3) as t̃ → 0 (from (55) and (109)), derivatives with respect to t̃
can still be neglected and it is therefore valid from a mathematical point of view to
apply this limit to the nonlinear problem formulated in § 4.

6.1.2. The phase shift and amplitude

Of equal interest to us here is how the amplitude A0 and the phase shift Φ behave
in this limit. To find the amplitude dependence we examine (104) in the limit t̃ → 0.
From (108) above we see that p̂ ∼ 1 to leading order since the critical layer is now
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sited close to the wall. We also find that

τ0 ∼ 8̃t1/2

π1/2
, τ1 → −2 as t̃→ 0,

from (5), (68), (107) and the fact that rc → 1 as t̃→ 0. Using this information and the
asymptotic form for the wave speed found above we deduce that

A0 ∼ 213/3

N1/3λ
7/3
0

(λ1C
(1))2/3t̃13/6 as t̃→ 0,

providing a direct match (cf. (56a, ba)) between the weakly nonlinear theory of § 3
and the strongly nonlinear theory presented here. In addition, from examination of
(98) in this limit we can obtain the behaviour of the phase shift as

Φ ∼ λ
11/2
0

(2N)5/2λ1

t̃−9/4 as t̃→ 0,

in accordance with (56a, bb), and providing another exact match back to the weakly
nonlinear regime.

We can now complete the connection of the weakly nonlinear neutral stability of
the developing flow with the nonlinear neutral stability of HPF by analysing the limit
of the nonlinear problem of § 4 as t̃→∞.

6.2. The limit t̃→∞
From the results of § 4 and the form of the basic flow (60) we have

ũ0 → 1− r2, c0 → c01−, rc → rc1 + as t̃→∞,
with τ0 → 2r2

c1, τ1 → −r2
c1. For this to be a valid limit of the nonlinear problem we

require α̃c � 1/̃t and so we must have Â � O(̃t7/6) from (55). Given a sufficiently

large amplitude Â then, at large t̃ the reduced Rayleigh equation becomes to leading
order

Q′′2 +

(
1

r
+

4r

r2
c1 − r2

)
Q′2 − N2

r2
Q2 = 0, Q2(0) = Q′2(1) = 0,

with zero phase shift across r = rc1. The appropriate solution satisfying the condition
at r = 0 and zero phase shift is

Q2 ∝ rNRe

[∫ 1

0

s−µ1 (1− s)µ2

(
1−

(
r

rc1

)2

s

)µ3

ds

]
, (110)

where the constants µi are given by

µ1 = 2− 1
2
N − 1

2
(N2 + 4)1/2, µ2 = µ1 +N − 1, µ3 = 3− µ1 −N.

The value of rc1 can be calculated by applying Q′2(1) = 0 to (110). This gives the
unique solution

rc1 ' 0.846, c01 ' 0.284, p̂ = Q2(rc1) ' 1.004 for N = 1 (111)

(where we have normalized such that Q2(1) = 1) and it can be proved rigorously that
no real solutions exist for any other integer values of N (see Walton 2001 for more
details). This result is consistent with our numerical observation that no neutral modes
with N > 2 survive beyond a finite value of t̃ in the computations of § 5. The values
given in (111) are identical to those found numerically by SB in their investigation of
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the nonlinear stability of HPF and also agree with those found in our computations.
Thus we see that as t̃ → ∞ the nonlinear neutral modes in the impulsively started
flow develop into the SB modes (or more accurately the small-wavenumber limit of
the SB modes). The amplitude of these neutral modes is given by the large-̃t limit of
(104) with N = 1:

A01 = 21/3r
2/3
c1 (Q2(rc1))

2/3c
5/3
01

(−6C (1) − 2π − 25/2(2− C (2))
)2/3 ' 0.894,

while the phase shift across the critical layer is α̃−1/2Φ1, with Φ1 obtained from the
limit of (103) as t̃→∞ as

Φ1 =
−2r4

c1

(Q2(rc1))221/2c
5/2
01

' −16.71.

These values agree with the values at large t̃ obtained in the computations of § 5 and
complete the connection between the weakly nonlinear stability of the impulsively
started flow and the nonlinear stability of Hagen–Poiseuille flow.

7. Conclusion
By using asymptotic methods we have followed the evolution of a small neutral

disturbance at high Reynolds number from its initial weakly nonlinear stage at the
upper branch time, when the basic flow is in an undeveloped state given specifically
by (3), all the way to its strongly nonlinear form in the fully developed HPF into
which the basic flow evolves as t → ∞ on the O(R) time scale. The development
can be described analytically only for the crucial disturbance size which we have
seen is O(R−22/27) at O(R7/9) times after the fluid is set into motion. The amplitude
of the neutral wave adjusts over the slow time scale associated with the basic flow,
increasing to O(R−2α̃5/3) as the fully developed state is attained. This agrees with the
small-wavenumber limit of Smith & Bodonyi’s work which was mentioned in the
introduction.

To explain the results of our analysis and their implications we consider a thought
experiment that possibly may be realized in an experimental situation. We confine
our attention to O(R) distances from the pipe entrance thus ensuring that the basic
developing flow is independent of x. A pressure gradient is imposed along the pipe
(corresponding to a given large Reynolds number) and the fluid is set into motion.
Care is taken at this stage to keep the flow as disturbance free as possible.

Suppose that very soon after the fluid in the pipe has been set into motion, a
small spiral-wave disturbance of a fixed (long) wavelength is introduced into the
flow. According to linear theory there will be a time interval (bounded by the lower
and upper branch times) during which the wave experiences amplification. Provided
the disturbance is still sufficiently small when the upper branch time is reached (at
which instant the disturbance is neutral) the wave will subsequently decay in time
and ultimately the basic flow evolves into HPF.

If however the disturbance has reached the critical size O(R−22/27) at the O(R7/9)
upper branch time, the analysis in this paper shows that the wave can remain
in neutral, right into the fully developed regime, by adjusting its amplitude and
frequency over the slow time scale associated with the mean flow. Ultimately, as
t̃ → ∞ we obtain a small-amplitude long-wavelength neutral wave superimposed on
the fully developed HPF.

All of the above assumes that the azimuthal wavenumber of the linear disturbance
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is equal to unity. If this is not the case and we have a combination of azimuthal
modes, then the evolution process is not clear-cut since the numerical results of § 5
indicate that a neutral wave with N 6= 1 does not persist in a simple form beyond
t = Rts say, where ts depends on N. The ultimate fate of these disturbances is an area
worthy of further study.

Returning to the N = 1 case, since the structure described here arises from upper
branch linear stability properties, we expect that shorter-wavelength disturbances
of this amplitude will decay temporally while there will be at least one temporally
unstable mode with a longer wavelength than the neutral mode. Further study is
called for in order to confirm this and also to investigate the role that the lower
branch modes play.

The idea that a nonlinear wave can remain neutral by adjusting its frequency
and amplitude over the time scale of the mean flow is reminiscent of vortex–wave
interaction theory (Hall & Smith 1991) in which the evolution of a nonlinear neutral
wave is followed, and the effect of the mean flow on the wave occurs as a purely
parametric effect.

For the first time then, an unambiguous, natural path leading ultimately to the
nonlinear instability of HPF can be clearly seen, although of course a number of
questions remain to be addressed. Apart from those mentioned above, the most im-
portant next step is to verify the existence of the nonlinear neutral modes numerically
either from the solution of the full Navier–Stokes equations at finite R, or more
tractably, from the solution of the RNS equations (58) at large but finite values of
α̃. Although the analysis presented here is only strictly valid at asymptotically large
Reynolds number, we believe that by demonstrating that the critical layer moves
away from the wall as time increases to O(1) distances at O(R) times, it at least
begins to explain finite-Reynolds-number phenomena such as the generation of slugs
of vorticity observed by experimentalists such as Wygnanski & Champagne (1973).
Of course in most situations there will be a number of competing mechanisms and
transition to turbulence via the algebraic growth phenomenon (Schmid & Henningson
1994) is also a possibility.

The input of larger disturbances than those proposed here would lead to nonlinear
effects becoming important at earlier times in the evolution process. In such cases
it is likely that the fully developed HPF state will never be attained and so-called
bypass transition would occur. Our claim is that at large Reynolds number the critical
amplitude suggested here marks the stability boundary between bypass transition and
the decay of linear perturbations.

The author extends his thanks to Professor F. T. Smith for originally suggesting the
nonlinear stability of Hagen-Poiseuille flow on the O(R) length and time scales, and
for many fruitful discussions over the years. The referees are also thanked for their
constructive comments.
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